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In Poiseuille flow in a circular tube passive contaminant initially spread uni- 
formly over the cross-section would be pulled out in a paraboloidal snout in the 
absence of any diffusive mechanism, and there would be a discontinuity in 8, 
the mean concentration over the cross-section, associated with the contaminant 
at  the front of the snout. In  reality molecular diffusion smooths out this snout 
in two ways: direct longitudinal diffusion and the interaction between lateral 
diffusion and advection. The effect of these two mechanisms is discussed, and 
determined for small values of Kt/a2, where t is the time since injection, K is the 
molecular diffusivity and a is the tube radius. For such values, important in 
many applications, the tube walls play no part in the smoothing process. It is 
shown that for Kt/a2 < 0.25(Ua/~)-3, where U is the discharge velocity, the effect 
of longitudinal diffusion dominates over that of the interaction, which is, in 
turn, dominant for Kt/a2 > 2.5(Ua/~)-3, when is close to the form described 
by Lighthill (1966). 

1. Introduction 
The dispersion of passive contaminant in flow in a tube is caused by the direct 

effect of molecular diffusion and by the interaction of advection and diffusion. 
The results of these processes for times after injection of the contaminant greater 
than a2/K, where a is a length characteristic of the dimensions of the tube cross- 
section and K is the molecular diffusivity, have been investigated in a large 
number of papers since the pioneering work by Taylor ( 1953). 

However in many important flows, a2 /K,  the time taken for a molecule of 
contaminant to wander over the tube cross-section, is much greater than the 
time taken for i t  to be carried right through the tube. Thus in the human aorta 
a x 1 em, so that a2 /K x lo5 s, yet a fluid particle travels right through the aorta 
in several seconds. In  smaller arteries the difference between the two time scales 
is less marked as Lighthill (1966) pointed out, but it is in the large arteries that 
most of the important work with injected contaminants occurs. 

Thus it is important to know how the dispersion of an injected contaminant 
proceeds for times t after injection such that K t / a 2  < 1. This is also an interesting 
problem theoretically, since nearly all previous work (e.g. Chatwin 1970) on the 
dispersion process has given results valid asymptotically as K t / a 2  -+ CO, but not 
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valid as h-t/a2+0, and there is clearly a need to match such results to others 
valid for small times. Technically it is more difficult to obtain results for small 
times than for large times. Not only does the diffusion equation have a singularity 
at t = 0,  but also the details of the flow and of the initial distribution of con- 
taminant affect the dispersion process more markedly for small times than for 
large times. 

Lighthill (1966) was however able to obtain some important results for the 
particular case of Poiseuille flow in a circular tube of radius a, when C, the 
distribution of concentration, satisfies 

where U is the discharge velocity, x measures distance along the tube axis and r 
is the radial co-ordinate. Lighthill considered only the case when the contaminant 
is initially distributed uniformly over the cross-section, so that 

C = f ( x )  at t = 0. (1.2) 

In  the absence of any diffusion whatsoever the contaminant near the tube axis 
is pulled forward faster than that nearer the walls, so that the forward portion 
of the cloud of contaminant forms a paraboloidal snout with sharp edges. But 
in reality diffusion smooths out this snout by two separate mechanisms: direct 
longitudinal diffusion and interaction between advection and cross-sectional 
diffusion. Lighthill considered only the second of these, whereas the purpose of 
the present paper is to extend Lighthill's results to include the effects of both 
mechanisms. 

In  order to appreciate that both effects can be important it is useful to consider 
the special initial distribution when 

B = S(x) a t  t = 0. 

C(x,  r ,  t )  = (na2)-l S[x - %it( 1 - r2/a2)], 

(1.3) 

(1.4) 

In  the absence of diffusion C(x ,  r ,  t )  satisfies 

and this is plotted schematically in figure I, as is the value of c ( x ,  t ) ,  the mean 
concentration over the cross-section, which, using (1.4), is given by 

(Throughout this paper the units of concentration will be chosen such that 

This is for algebraic simplicity and is possible since all equations are linear in C.) 
The results (1.4) and (1.5) are given by Taylor (1953). As explained above, the 
present paper examines how the discontinuity at x = 2% is smoothed out. The 
direct effect of longitudinal diffusion smooths out the discontinuity over an axial 
distance of order (Kt)*. On the other hand, lateral diffusion causes material 
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(4 
FIGURE 1. (a )  The effect of advection alone on a distribution of concentration initially 
uniform over the cross-section. (b)  The mean concentration over the cross-section for the 
distribution sketched in (a).  

initially on the axis to be spread laterally over a distance of the same order, and 
thus to have an axial velocity of order 2i i~t /a2 less than it would have had it 
remained on the axis. Hence this mechanism leads to a smoothing out of the 
discontinuity over an axial distance of order ;ilKt2/a2, as Lighthill (1966) found. 
Another difference between the two smoothing mechanisms is also apparent, for 
longitudinal diffusion causes half of theImateria1 initially near the axis to have an 
axial displacement g r e a t e r  than 2Zt, but the interaction mechanism acting alone 
does not permit any material to have an axial displacement greater than 2Zt 
(as illustrated in figure 2 of Lighthill’s paper). 

The preceding argument, and the analysis in the remainder of the paper, ignores 
all effects of the tube walls, so that it is supposed throughout this paper that 
d/a2  < 1,  Now (Kt)* z KUt2/a2 when &/a2 M (Ua /K) -%,  so in the common practical 
situation with ;iia/K $ 1 the interaction mechanism described by Lighthill is the 
predominant one for times such that (Gal.)-% < K t / a 2  < 1. But in all flows, the 
longitudinal diffusion mechanism is the predominant one for times such that 
Kt /a2  is much less than the smaller of ( k / ~ ) - %  and 1. Granted the difference in 
type between the two smoothing mechanisms it is important to see how one is 
replaced by the other. Note also that in the uncommon flows for which UW/K is 
not much greater than 1, the interaction mechanism which replaces longitudinal 
diffusion as time increases involves the walls, and so is essentially of the form 
described by Taylor (1953) rather than that described by Lighthill (1966). 

The remainder of the paper is concerned with making these rather general 
arguments precise. In  $ 2  a direct extension of Lighthill’s (1966) analysis is 
examined, but this applies only in Poiseuille flow. In  $ 3  results consistent with 
those in $ 2  are obtained by another method which could be applied to flows 
other than Poiseuille flow. 

38-2 



696 P. C. Chatwin 

2. An exact solution 
It is clear from the preceding arguments that the walls play no part in the 

smoothing of the front of the paraboloidal snout for times t after injection such 
that &/a2 Q 1. Lighthill (1966) examines this in detail and his arguments should 
apply even when longitudinal diffusion is included for this does not seem likely 
to increase radial derivatives of C. As a consequence the smoothing of the snout 
can be analysed by supposing that (1.1) and (1.2) hold throughout space. In 
addition the proper boundary condition of zero flux across the tube walls can be 

(2.1) 
replaced by the condition -f as ~ OO. 

Now (1.1) has the exact solution 

C = exp {ik(x - 2%) - ( a r 2 / 4 ~ )  tanh at - Kk2t) sech at, (2.2) 

where a 2  = - 8Zi kK/a2. (2.3) 

Then, provided axes are chosen such that f(x) in (1.2) is zero for x > 0, the 
solution of (1.1) which satisfies (1.2) and (2.1) is (as in Lighthill 1966) 

ar2 - 2%) - - tanh at - Kk2t 
4 K  

where IZ > 0, and P(k)  is the Fourier transform off@), so that 

(2.5) f(x) e-ikzdx, f(x) = /II:ceP(k) eikxdk. 
’ 

Also, the value of the mean concentration @(x, t) is given by integrating r c  [with 
C given in (2.4)] over all r from 0 to 00 (since the tube walls are ignored) and 
dividing by +a2. This yields 

exp [ik(x - 2Gt) - ~ k ~ t ]  
dk. 

at sinh at 
- 
C(x,t) = - 

The results (2.2), (2.4) and (2.6) differ from the corresponding results in Lighthill 
(1966) by having the term exp[-Kk2t]. This comes from the longitudinal 
diffusion term in ( l . l ) ,  i.e. K a2C/ax2, which Lighthill neglected. However the 
presence of this term makes it impossible to handle (2.4) and (2.6) in the way 
Lighthill did, for exp [ - ~ k ~ t ]  takes large values on parts of each of the semicircles 
k = Kei* (K > 0, 0 < 0 < n) and k = Keg* ( K  > 0, - - 7 ~  < 8 < 0). These were the 
contours used by Lighthill. 

The subsequent discussion in this section shows how the expression (2.6) for 
c can be handled. Writing s = at and using (2.3) gives 

where the contour C, is illustrated in figure 2 and 
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FIGURE 2. The contours used in the determination of c. 

Now M is always positive while N may be positive or negative. Also 

64M = [ ( ~ t ) 3 / ~ E t ~ / a 2 ] ~ ,  (2.9) 

so that, essentially, M is the square of the ratio of the distance over which 
longitudinal diffusion smooths out the discontinuity to that over which the 
interaction mechanism smooths it out. As t increases from 0 to 00, M decreases 
from 00 to 0, and Lighthill’s result is obtained by setting M = 0. 

Now arbitrary initial distributions of the form (1.2) can be built up by super- 
position from those of the form (1.3), for which, using (2.5) and (2 .7) ,  

(2.10) 

The only singularities of the integrand are on the imaginary axis at s = 0, & in, 
f 2in, . . . . Thus the integral over the contour C, can be replaced by one over the 
contour C,, also shown in figure 2.  The contour C2 consists of two straight lines 
and a quarter-circle. The integral is independent of the radius 6 of the quarter- 
circle, so it is convenient to consider 6 to be small. An easy analysis shows that 
the quarter-circle contributes an amount [ ( 4 E t ) - l +  O(S)] to (2.10), so that 

(2.11) 
- 1 1  mexp[-Mu2-iNu]du 
C = -  4ut +-lim[S 4nut 81 04 e-@’ sinh (d e-ki”) 

where C.C. stands for complex conjugate. 
Now (2.1 1)  can be approximately evaluated in some special cases. Near u = 0, 

1 N Z  ---+...I-[--- 1 7u 1 3 1 ~ 2  +...I. (2.12) 
( ~ 3  e-&in sinh (d e-ain) ‘ [ u 360 6 15120 
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Lighthill 
10 1 0.1 0.01 0.001 (M = 0) 

\ M  
N \  

-M) 

-5 
-1 
-4 -*  
- 8  
- 16 

1 
16 
1 
8 

0 
_- 
- 

t 
3 
1 
5 
M) 

0.00 
0.12 
0-40 
0.44 
0.46 
0.47 
0.48 
0.49 
0.49 
0.50 
0.51 
0-53 
0.57 
0.86 
1.00 

0.00 
0.00 
0.21 
0.32 
0.38 
0.42 
0.44 
0.45 
0.47 
0.49 
0.52 
0.59 
0.72 
1.00 
1.00 

0.00 
0.00 
0.02 
0.07 
0.18 
0.26 
0.31 
0.36 
0.41 
0.47 
0.57 
0.77 
0.99 
1.00 
1.00 

0.00 
0.00 
0.00 
0.00 
0.00 
0.04 
0.09 
0.17 
0.28 
0.42 
0.70 
0.96 
1.00 
1.00 
1.00 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.02 
0.15 
0.41 
0.81 
0.98 
1.00 
1.00 
1.00 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.08 
0.43 
0.83 
0.99 
1.00 

1.00 
1.00 

TABLE 1. Values of 2 2 8  from (2.14) for various values of M = a4/64G2~t3 and 
N = ( a 2 / 4 ~ t ) ( l  -2/2Et). Also tabulated is Lighthill's (1966) result given in (2.15) 

Pure-advection 
[solution 

- 0.5 0 0.5 
" -1.0 

(z - 2Gt) /8~Gt~a-~  

FIUURE 3. Graphs of for various values of M compared with Lighthill's (1966) result and 
with the pure-advection solution shown in figure 1. 0, M = 10; A, M = 1; a, M = 0.1; 
0 ,  M = 0.01; v ,  M = 0.001. 

For M % 1, exp ( - M v 2 )  decreases rapidly as u increases, so that an argument 
similar to that used in the method of steepest descent can be used to evaluate c' 
asymptotically, using the expansion (2.12) and the following integrals: 
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etc., where each member of the series (except the first) is obtained by differentiat- 
ing the previous member with respect to N .  Hence on integrating term by term, 

exp [ - N2/4M]  

which is valid asymptotically as M -+ co for NI2Mt of order 1 or less. It is also easy 
to show by the method of stationary phase that (2.13) holds for IN/2MtI B 1, 
when exp [ - N 2 / 4 M ]  is negligibly small. 

For other values of N and M the integral for c has to be evaluated numerically. 
This can conveniently be done by substituting CT = 2r2 in (2.11), expressing the 
integrand in terms of its real and imaginary parts and rearranging, when the 
following result is obtained: 

(2.14) 

Here 
cosh r sin r - sinh r cos r 

sinh2 r + sin2 T 
I = 1; exp ( - 4 ~ 7 4 )  cos 2 ~ 7 2  

] dr. 
cosh r sin r + sinh r cos r 

sinh2 r + sin2 r 
J = 1; exp ( - 4Mr4) sin 2Nr2 

There is no difficulty in the calculations and some results are given in table 1 .  
Also given in the table is Lighthill's (1966) result, which can be written for 
N > 0 in each of the following ways: 

- 1 l " 0  
C = - + ,  (-1)mexp[-n2n2N] 

2ut 
00 

(2.15) 

For N < 0, i.e. for x > 2Zt, Lighthill naturally found c = 0, since direct longi- 
tudinal diffusion is the only mechanism which can transport contaminant 
molecules faster than the maximum fluid velocty. 

The results in table 1 are plotted in figure 3 t  to show how Lighthill's result 
(2.15) is approached as M decreases, i.e. as t increases. In  practice Lighthill's 
result holds for M < 0.001, i.e. for 

ictl.2 > ~ - ~ ( G U / K ) - + ,  (2.16) 

using (2.8). This result is consistent with the arguments in 3 1 .  For smaller values 
of ~ t / a ~  thezdirect effect of longitudinal diffusion is important, and indeed 

t In figure 3 the axial co-ordinate is stretched by a factor proportional to t-2 to facilitate 
comparison with (2.15) for large t (small M ) ,  so that the distance over which longitudinal 
diffusion smooths the snout for small t (large M )  appears larger than it is. Some of the 
results are plotted with a different scaling in figure 4. 
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(z-  2;iit)/2(Kt)4 

FIGURE 4. Gra hs of for M = 1 and M = 0-1 (solid lines) compared with (4%)4 
{1+erf [ N / 2 M  f 1) (broken lines), the first term of the asymptotic expansion (2.13). 
(a)  M = 1. ( b )  M = 0.1. 

predominates for M > 0.1 as figure 4 shows. Particularly significant is the value 
of c at x = 2Zt ,  which, for M > 1, is almost (4Et ) - l ,  i.e. one-half of the value 
taken in 0 < x < 2% by the pure-advection theory (1.5). This is an expected 
result, as explained in 9 1.  Figure 4 shows that for M >!I, i.e. for 

Kt/a2 < 0*25(6%/K)-8, 
the form of 6 is given by 

(2.17) 

C M ( 4 ~ t ) - 1 {  1 + erf [N/2M4]) ,  

i.e. by the first term of the asymptotic solution (2.13). 
Since the analysis of this section holds only if the contaminant does not 

interact with the tube walls, the estimates (2.16) and (2 .17)  must be supplemented 
by the further condition ~ t / d  S 0.1, as Lighthill (1966) showed. 

Although the detailed results of this section cannot be applied to the com- 
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plicated, usually unsteady, flows that frequently occur in practice, the general 
arguments of 3 1 and the estimates (2.16) and (2.17) should have some validity. 
Consider for example the human aorta, where %/K M lo6, based on the mean 
discharge velocity, so that (Gz/K)+, the parameter appearing in (2.16) and 
(2.17), is of order Now the time taken for a molecule moving with the mean 
discharge velocity to pass right along the aorta is of the order of 5s, giving a 
maximum possible value of K t / a 2  of order 5 x It then appears from (2.16) 
and (2.17) that for most of the time that the contaminant remains in the aorta 
the effect of direct longitudinal diffusion is much greater than that of the inter- 
action considered by Lighthill. But this conclusion remains tentative without 
calculations using more realistic velocity profiles. 

3. Another approach 
The merit of the approach to be described in this section is that it can be 

applied to flows other than Poiseuille flow although in this paper only Poiseuille 
flow will be considered in detail. It is hoped to deal in detail with other flows, 
especially those which are not unidirectional, in a later paper. 

Consider contaminant released from ro a t  t = 0 in a steady flow with velocity 
u(r), so that the concentration C satisfies 

aclat + u . vc = K V ~ C  (3.1) 

and Coc6(r-ro) a t  t =  0. (3.2) 

Retaining the assumption of the earlier sections of this paper that the tube walls 
play no part in the dispersion process, the approximate solution of (3.1) and (3.2) 
for sufficiently small times is (see, for example, Saffman 1960) 

where A is a constant to be chosen later, and 

R = {r-ro-tu(rg))/2(Kt)!i = (X, Y , Z ) .  (3-4) 

Thus the cloud of contaminant initially spreads isotropically, entirely as the 
result of diffusion, about the fluid particle initially coincident with the source. 
Now it is easy to see that (3.1) has a formal solution, with (3.3) as its leading term, 

A of the form 
C=-  8(7TKt)% exp[-R2](1+ n = l  5 TnF,(R)), 

where R is defined in (3.4) and 
T = (&/a2)*. 

(3.5) 

(3.6) 

Equations for the I?, can be obtained by substituting (3.5) into (3.1), expanding 
u(r)  in a Taylor series about ro and equating coefficients of like powers of 27. 
The equations are solved subject to the boundary condition 

I',exp[-R2]+0 as (R\+co, (3.7) 
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thus ensuring that each term of the expansion (3.5) tends to zero as IRI -+ 00, in 
accordance with (2.1). 

When the flow is Poiseuille flow in a circular tube - the subject of this paper - 
then u(r) = (2ii{l -yz/az-z2/a2}, 0,O) 

and the equations for the rn have simple polynomial solutions. In  particular, 
taking 

it is found that 

rl = 0, 

rz = - (4qK) x[~,  Y + xo 21, 

F3 = -Q(iia/~)X[2Y2+222+ I], (3.9) 

r., = - g(;il /K)2[1- 2x21 [6(yoY+zo ~ ) 2 +  (yi +xi)], J 
where X, Y and 2 are defined in (3.4). 

In  order to link this result in with the results of $ 2, the value of C associated 
with the C in (3.5) is obtained in the way described immediately preceding (2 .6) .  
For the case of Poiseuille flow, when (3.9) hold, the result is 

( g + ~ ; ) T ~ ( 2 X ~ - i ) . . .  . (3.10) 1 
Finally (3.9) must be averaged over all possible source points so that the initial 
condition (1.3), on which the detailed results of $ 2  are based, can be met. Hence 
the value of 6 in (3.10) is integrated over all yo and xo [note that X depends on 
yo and zo because of its dependence on u(ro) shown in (3.4)] and A is chosen such 
that 

Cdx = 1, f_mm 
as it was in $8 1 and 2. The result is 

exp [ - N2/4M] 
C = -  l + e r f -  - 
- 4% ' { [2:*]) 24Et(nM)* 

where M and N are as in $2. This consists of the first two terms of the asymptotic 
expansion given in (2.13), so the analysis in this section is consistent with $ 2 ,  
when the initial distribution is uniform over the cross-section. 

I am grateful to Sir James Lighthill, F.R.S., for his comments on some of the 
results given in this paper. 
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